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Introduction

Building modelling software is increasingly used to optimize design parameters for efficiency and to 
predict building performance under various conditions (de Wilde, 2023). A critical component of 
these systems is the availability of meaningful weather and climate data. The World Meteorological 
Organization (WMO) recommends using at least thirty years of historical data to define climate 
norms and extremes, as shorter periods may not produce reliable statistics due, for example, to 
annual and shorter-term precipitation variances (WMO, 2023).

In the Australian context, the Bureau of Meteorology (BoM) has only measured precipitation at half-
hourly intervals since the progressive installation of automatic Tipping Bucket Rain Gauges from 
the  late  1990s.  Prior  to  this,  precipitation  data  was  primarily  collected  through  daily  manual 
readings  by  post  office  staff  or  volunteers  at  9:00AM  clock  time.  However,  for  reliable  built  
environment modelling, hourly or sub-hourly data is essential. This discrepancy highlights a clear 
need for algorithms capable of producing fine-scale temporal data based on daily readings and 
hourly measurements of other weather elements.

The process of  generating finer  temporal  resolution data (e.g.,  half-hourly)  from coarser  scale 
measurements  (e.g.,  daily)  is  known  as  disaggregation.  In  the  context  of  precipitation,  this 
technique is crucial for bridging the gap between available historical data and the requirements of 
modern building performance simulations, hygrothermal models, and hydrological models.

In this abstract, we present a machine learning approach for disaggregating daily precipitation data 
into half-hourly intervals, specifically tailored for the Australian climate data collection context1. The 
basis of our model is long short-term memory (LSTM), a type of recurrent neural network that can 
capture temporal correlations in sequential data over an arbitrary timeframe (Gers et al., 2000). We 
demonstrate the effectiveness of our approach in four Australian capital cities using BoM data.

Data Selection and Preparation

Using data sourced from BoM, we present results for four stations, each representing a different 
climate zone as per the Australian Building Codes Board (2024). These are presented in Table 1.

Table 1 Climate zones of investigated locations

Location Climate Zone Precipitation Half-hourly Record Start

Brisbane Climate Zone 2 2000-03

Sydney Climate Zone 5 1998-12

Melbourne Climate Zone 6 1997-10

Canberra Climate Zone 7 2000-04

For each weather station, we utilised 33 years of hourly non-precipitation data in TMY2 format from 
1990 – 2022, which we linearly interpolated to half-hourly intervals. While Brisbane's data required 

1EPW and ACDB formats use different timestamp conventions: EPW represents the hour before the timestamp, while 
ACDB represents the hour centred on the timestamp. Half-hourly data generation is necessary to accommodate this 
difference.
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no  temporal  adjustment,  the  other  locations'  daily  precipitation  measurements  needed  to  be 
aligned to account for daylight saving time. These locations undergo biannual one-hour shifts, 
requiring temporal  alignment between the daily precipitation readings and other meteorological 
elements, as the half-hourly precipitation data is consistently recorded in standard time. We then 
perform an inner join of this interpolated data with the station’s complete half-hourly precipitation 
data. This results in a time series dating from the half-hourly precipitation record start date. We test 
the model on all  data from 2020 to 2022, use 2018 and 2019 as the validation set to protect 
against model overfitting and train on the remaining data. This results in a train-validation-test split 
of roughly 75%-10%-15%. The training dataset was shuffled to allow the model to learn from a 
more representative sample in each batch.

We selected dew point temperature (DPT), dry bulb temperature (DBT), atmospheric pressure, and 
relative humidity (RH) as the model’s input features based on Pearson correlation to precipitation. 
These were standardised to have a mean of zero and a standard deviation of one before being 
passed to the model2.

The Model

We have designed a novel deep learning model, based on the LSTM architecture, specifically for 
precipitation  disaggregation  in  the  Australian  climate  context.  Figure  1  illustrates  the  model’s 
architecture. Each sequence of 48 half-hourly time steps is processed through two successive 
LSTM layers. Each LSTM layer contains 62 LSTM units, which capture temporal correlations in the 
data. The output of these layers then passes through a fully connected layer, reducing the feature 
dimension from 62 to 1 for each time step. A ReLU (rectified linear unit) activation follows, which 
ensures that all predicted precipitation values are non-negative, as rainfall cannot be negative. This 
is essential to prevent unrealistic outputs from the model. We then adjust the dimensions of our 
data before passing it to a normalisation layer. The normalisation layer scales the estimated half-
hourly precipitation values to ensure they sum to the given daily total. The final output is a single 
tensor (an ordered set of values) representing the day’s half-hourly precipitation estimates.

The  model  was  implemented  and  trained  using  PyTorch.  We defined  our  loss  function  for  a 
predicted tensor  and target tensor  as the sum of the mean squared error between  and , the 
Kullback-Liebler  divergence  between  the  softmax  outputs  of   and  ,  and  the  difference  in 
variance:

The first  two terms aim to measure overall  prediction accuracy and assess differences in  the 
relative distribution of rainfall within the day, while the last term aims to preserve the statistical 
characteristics of the target tensor in the prediction, particularly the magnitude of extreme values.

To train the model, we employed the Adam optimizer with an initial learning rate of 1e-3 and a 
batch size of 32. Learning rate scheduling was implemented with a reduction on plateau strategy to 
fine-tune the model's performance. After an initial run of 140 epochs (training cycles), the epoch 

2 Correlation with cloud cover, while strong in reality, has been overlooked because it is rarely available in the early years 
other than as a derivative of solar irradiation data which leaves all night hours cloud cover data as unreliable linear 
interpolations between pre-dusk and post-dawn values.

Figure 1: Model Architecture
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with the lowest validation loss was selected and trained with a learning rate of 5e-6 for a further 50  
epochs. This helped to further reduce the validation loss rate.

The model was trained on a single NVIDIA 4070 Ti Super GPU and took around 2.8 seconds per  
epoch. The entire training and testing pipeline takes just over 9 minutes to complete per location. 
The model weights corresponding to the lowest validation loss usually occur relatively early in the 
training run, before epoch 70, so there is scope to significantly reduce the number of epochs the 
model is trained to further cut runtime without sacrificing model quality.

Results

Table 2 Model results

Location RMSE (mm) Relative error in total number 
of precipitation half-hours (%)

Proportion of correctly detected 
precipitation half-hours with no error (%)

Brisbane 0.57 8.36% 61.63%

Sydney 0.51 13.15% 69.71%

Melbourne 0.23 8.02% 56.76%

Canberra 0.29 22.35% 67.08%

Mean 0.40 12.97% 63.80%

Table 3 Comparison of results with Ferrari, et al. 

Model RMSE 
(mm)3

Relative error in total number 
of precipitation hours (%)

Proportion of correctly detected 
precipitation hours (%)

LSTM (average) 0.45 12.57% 69.04%

Markov chain Monte Carlo 0.65 ~7% 20%

Figure 2 illustrates the model’s performance for Brisbane, comparing generated and observed half-
hourly precipitation. While the model generally captures the temporal patterns of rainfall (as seen in 
the hourly aggregation in Figure 3), it notably underestimates the magnitude of extreme events. 
This limitation arises from two main factors: the inherent smoothing effect of LSTM models, which 

3RMSE is sensitive to climate variance. Canberra RMSE values are used to enable a fair comparison.

Figure 2: Half-hourly series for Brisbane Figure 3: Hourly series for Brisbane
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prioritize  long-term dependencies  over  sharp  fluctuations,  and the  relative  scarcity  of  extreme 
rainfall instances in the training data. In the Brisbane training set, only 6.13% of wet days (9AM to 
9AM) featured half-hourly precipitation exceeding 10mm, with such events comprising just 1.5% of 
all wet half-hours.

Table 2 summarises our results on the test dataset. Across all climate zones, our model achieves 
an average error of 0.4 mm. Further, we evaluate its performance on two characteristics introduced 
by  Ferrari  et  al.  (2022)  as  desirable  for  a  disaggregation  model:  wet  half-hour  frequency 
preservation and wet half-hour detection. The model’s output displays an error of 12.97% in the 
number of rainfall half-hours and detects 63.80% of rainfall half-hours correctly. Table 3 compares 
our hourly re-aggregated series with the Markov chain Monte Carlo (MCMC) model of Ferrari et al. 
The  results  indicated  that  our  LSTM-based  approach  yields  lower  error  rates  and  improved 
detection of rainfall hours compared to MCMC. While our model shows a slightly higher error in 
estimating the total  number of  rainfall  hours,  this performance is still  commendable,  especially 
considering that our model primarily focuses on half-hourly, rather than hourly, disaggregation.

Conclusion

Our  model  demonstrates  robust  performance  in  precipitation  disaggregation  across  various 
Australian climate zones. Its ability to maintain accuracy while preserving important precipitation 
characteristics  such  as  total  number  and  distribution  of  wet  half-hours  makes  it  valuable  for 
generating data that can be used for building performance simulations.

The performance variations across cities suggest that local climate patterns significantly impact 
disaggregation accuracy. To address this, we could perform a hyperparameter search for each 
station to optimise the model's architecture. However, given the computational intensity of this 
approach, a more practical alternative might be to select an architecture per climate zone.

Several avenues for further investigation include:

 Enhancing the model's ability to capture fine-grained precipitation patterns by incorporating 
additional  meteorological  variables and refining the model  architecture to  better  handle 
rainfall intermittency;

 Applying the model to more locations and conducting further performance evaluations; and

 Training the model on an entire climate zone instead of individual stations, which could 
potentially improve model performance due to increased data availability.

These refinements could further increase the model's accuracy under various climate contexts. 
The generated series can then be used to define a climate normal, ensuring that precipitation can 
be reliably used for modelling and simulation of built environments.
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